Indian Journal of Private Psychiatry

Register      Login

VOLUME 17 , ISSUE 2 ( July-December, 2023 ) > List of Articles

REVIEW ARTICLE

A Systematic Review Article Determining the Prevalence and Causal Association of Chronic Lupus Patients Developing Obsessive Compulsive Disorder

Jyotika

Keywords : Neuroimaging, Neuropsychiatric, Obsessive compulsive disorder, Systemic lupus erythematous

Citation Information : Jyotika. A Systematic Review Article Determining the Prevalence and Causal Association of Chronic Lupus Patients Developing Obsessive Compulsive Disorder. Ind J Priv Psychiatry 2023; 17 (2):83-90.

DOI: 10.5005/jp-journals-10067-0146

License: CC BY-NC 4.0

Published Online: 14-06-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Abstract

Introduction: The incidence of neuropsychiatric lupus ranges from 25% to 75% with obsessive–compulsive disorder (OCD) being a common manifestation. The cardinal correlation and pathophysiological mechanism of OCD in chronic lupus patients is still under research. The objective of this article is to determine the prevalence and causal association of a chronic lupus patient developing OCD in its course of disease. Materials and methods: Human studies, randomized control trials, non-randomized control trials, cohort series, and cohort studies were included. This search resulted in 940 published, peer reviewed scientific articles as of March 2018. There was a repetition of the articles but yet the total was above 800 articles which were individually reviewed, thoroughly analyzed, and exquisitely interpreted. Results: The brain regions and cortico-striatal-thalamic-cortical (CSTC) circuits dysfunction with abnormalities of serotonin (5-HT), glutamate, and dopamine neurotransmitters in OCD were determined. The proposed pathophysiological hypotheses of activation of autoimmunity and inflammatory mechanism with predominant role of antibodies like anti-RP antibody, N-methyl-d-aspartate receptor antibodies, anti-phospholipid antibodies etc. and also increased proinflammatory cytokines like interleukin (IL)-6, IL-8 etc., were shown with probable heterogeneous neurological origin. This hypothesis was further strengthened by evidentiary support of neuroimaging modalities like brain magnetic resonance imaging (MRI), resting functional MRI, voxel-based morphometry, diffusion-tensor imaging, quantitative susceptibility mapping etc., which even though has provided mixed inferential data, there is consistent and repeated demonstration of structural abnormalities in basal ganglia and CSTC circuits. Conclusion: The evaluation and treatment approach would be different for the patients with only OCD and the one harboring OCD with underlying lupus. In the future, more studies involving neuroimaging and pathophysiology are recommended with similar prospects for better advancement.


HTML PDF Share
  1. Alessi H, Dutra LA, Braga PN, et al. Neuropsychiatric Lupus in clinical practice. Arq Neuropsiquiatr 2016;74(12):1021–1030. DOI: 10.1590/0004-282X20160150.
  2. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5, Fifth Edition. Washington, DC: American Psychiatric Association; 2013.
  3. Mulders AEP, Plantinga BR, Schruers K, et al. Deep brain stimulation of the subthalamic nucleus in obsessive-compulsive disorder: Neuroanatomical and pathophysiological considerations. Eur Neuropsychopharmacol 2016;26(12):1909–1919. DOI: 10.1016/j.euroneuro.2016.10.011.
  4. Yilmaz-Oner S, Oner C, Dogukan FM, et al. Anxiety and depression predict quality of life in Turkish patients with systemic lupus erythematosus. Clin Exp Rheumatol 2015;33(3):360–365.
  5. Kheirandish M1, Faezi ST, Paragomi P, et al. Prevalence and severity of depression and anxiety in patients with systemic lupus erythematosus: An epidemiologic study in Iranian patients. Mod Rheumatol 2015;25(3):405–409. DOI: 10.3109/14397595.2014.962241.
  6. Khedr EM, Elbeh KA, Elserogy Y, et al. Motor cortical excitability in obsessive-compulsive disorder: Transcranial magnetic stimulation study. Neurophysiol Clin 2016;46(2):135–143. DOI: 10.1016/j.neucli.2016.02.003.
  7. Bialas AR, Presumey J, Das A, et al. Microglia-dependent synapse loss in type I interferon-mediated lupus. Nature 2017;546(7659):539–543. DOI: 10.1038/nature22821.
  8. Shastri R, Shah G, Wang P, et al. MR diffusion tractography to identify and characterize microstructural white matter tract changes in systemic lupus erythematosus patients Acad Radiol 2016;23(11):1431–1440. DOI: 10.1016/j.acra.2016.03.019.
  9. Vargas JV, Vaz CJ. Evaluation of central nervous system involvement in SLE patients. Screening psychiatric manifestations – A systematic review. Acta Reumatol Port 2014;39(3):208–217.
  10. Hanly JG. Diagnosis and management of neuropsychiatric SLE. Nat Rev Rheumatol 2014;10(6):338–347. DOI: 10.1038/nrrheum.2014.15.
  11. Sciascia S, Bertolaccini ML, Roccatello D, et al. Autoantibodies involved in neuropsychiatric manifestations associated with systemic lupus erythematosus: A systematic review. J Neurol 2014;261(9):1706–1714. DOI: 10.1007/s00415-014-7406-8.
  12. Maciel RO, Ferreira GA, Akemy B, et al. Executive dysfunction, obsessive-compulsive symptoms, and attention deficit and hyperactivity disorder in Systemic Lupus Erythematosus: Evidence for basal ganglia dysfunction? J Neurol Sci 2016;360:94–97. DOI: 10.1016/j.jns.2015.11.052.
  13. van Velzen LS, Vriend C, de Wit SJ, et al. Response inhibition and interference control in obsessive-compulsive spectrum disorders. Front Human Neurosci 2014;8:419. DOI: 10.3389/fnhum.2014.00419.
  14. Van Ameringen M, Patterson B, Simpson W. DSM-5 obsessive-compulsive and related disorders: clinical implications of new criteria. Depress Anxiety 2014;31(6):487–493. DOI: 10.1002/da.22259.
  15. Goodman WK, Grice DE, Lapidus KA, et al. Obsessive-compulsive disorder. Psychiatr Clin North Am 2014;37(3):257–267. DOI: 10.1016/j.psc.2014.06.004.
  16. Abi-Dargham A, Horga G. The search for imaging biomarkers in psychiatric disorders. Nat Med 2016;22(11):1248–1255. DOI: 10.1038/nm.4190.
  17. Blackford JU. Leveraging statistical methods to improve validity and reproducibility of research findings. JAMA Psychiatry. 2017;74(2): 119–120. DOI: 10.1001/jamapsychiatry.2016.3730.
  18. Button KS, Ioannidis JP, Mokrysz C, et al. Power failure: Why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 2013;14(5):365–376. DOI: 10.1038/nrn3475.
  19. Posner J, Marsh R, Maia TV, et al. Reduced functional connectivity within the limbic cortico-striato-thalamo-cortical loop in unmedicated adults with obsessive-compulsive disorder. Hum Brain Mapp 2014;35(6): 2852–2860. DOI: 10.1002/hbm.22371.
  20. Harrison BJ, Soriano-Mas C, Pujol J, et al. Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Arch Gen Psychiatry 2009;66(11):1189–1200. DOI: 10.1001/archgen psychiatry.2009.152.
  21. Anticevic A, Hu S, Zhang S, et al. Global resting-state functional magnetic resonance imaging analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder. Biol Psychiatry 2014;75(8):595–605. DOI: 10.1016/j.biopsych.2013.10.021.
  22. Hou JM, Zhao M, Zhang W, et al. Resting-state functional connectivity abnormalities in patients with obsessive-compulsive disorder and their healthy first-degree relatives. J Psychiatry Neurosci 2014;39(5):304–311. DOI: 10.1503/jpn.130220.
  23. Pittenger C, Adams TG Jr, Gallezot JD, et al. OCD is associated with an altered association between sensorimotor gating and cortical and subcortical 5-HT1b receptor binding. J Affect Disord 2016;196:87–96. DOI: 10.1016/j.jad.2016.02.021.
  24. Häge A, Banaschewski T, Buitelaar JK, et al. TACTICS Consortium. Glutamatergic medication in the treatment of obsessive compulsive disorder (OCD) and autism spectrum disorder (ASD) - study protocol for a randomised controlled trial. Trials 2016;17(1):141. DOI: 10.1186/s13063-016-1266-8.
  25. Christopher P. Glutamatergic agents for OCD and related disorders. Curr Treat Options Psychiatry 2015;2(3): 71–283. DOI: 10.1007/s40501-015-0051-8.
  26. Hsieh HJ, Lue KH, Tsai HC, et al. FL-3,4-Dihydroxy-6-[F-18]fluorophenylalanine positron emission tomography demonstrating dopaminergic system abnormality in the brains of obsessive-compulsive disorder patients. Psychiatry Clin Neurosci 2014;68(4):292–298. DOI: 10.1111/pcn.12139.
  27. Mattheisen M, Samuels JF, Wang Y, et al. Genome-wide association study in obsessive-compulsive disorder: Results from the OCGAS. Mol Psychiatry 2015;20(3):337–344. DOI: 10.1038/mp.2014.43.
  28. Stewart SE, Yu D, Scharf JM, et al. Genome-wide association study of obsessive-compulsive disorder. Mol Psychiatry 2013;18(7):788–798. DOI: 10.1038/mp.2012.85.
  29. Taylor S. Molecular genetics of obsessive-compulsive disorder: A comprehensive meta-analysis of genetic association studies. Mol Psychiatry 2013;18(7):799–805. DOI: 10.1038/mp.2012.76.
  30. Eng GK, Sim K, Chen SH. Meta-analytic investigations of structural grey matter, executive domain-related functional activations, and white matter diffusivity in obsessive compulsive disorder: An integrative review. Neurosci Biobehav Rev 2015;52:233–257. DOI: 10.1016/j.neubiorev.2015.03.002.
  31. Banca P, Voon V, Vestergaard MD, et al. Imbalance in habitual versus goal directed neural systems during symptom provocation in obsessive-compulsive disorder. Brain 2015;138(Pt 3):798–811. DOI: 10.1093/brain/awu379.
  32. Tang W, Zhu Q, Gong X, et al. Cortico-striato-thalamo-cortical circuit abnormalities in obsessive-compulsive disorder: A voxel-based morphometric and fMRI study of the whole brain. Behav Brain Res 2016;313:17–22. DOI: 10.1016/j.bbr.2016.07.004.
  33. Fouche JP, du Plessis S, Hattingh C, et al. Cortical thickness in obsessive-compulsive disorder: multisite mega-analysis of 780 brain scans from six centres. Br J Psychiatry 2017;210(1):67–74. DOI: 10.1192/bjp.bp.115.164020.
  34. Fan Q, Palaniyappan L, Tan L, et al. Surface anatomical profile of the cerebral cortex in obsessive-compulsive disorder: a study of cortical thickness, folding and surface area. Psychol Med 2013;43(5): 1081–1091. DOI: 10.1017/S0033291712001845.
  35. Ling T, Qing F, Chao Y, et al. Structural changes in the gray matter of unmedicated patients with obsessive-compulsive disorder: A voxel-based morphometric study. Neurosci Bull 2013;29(5):642–648. DOI: 10.1007/s12264-013-1370-7.
  36. Jingming H, Lingheng S, Wei Z, et al. Morphologic and functional connectivity alterations of corticostriatal and default mode network in treatment-naïve patients with obsessive-compulsive disorder. PLoS One 2013;8(12): e83931. DOI: 10.1371/journal.pone.0083931.
  37. Koch K, Reess TJ, Rus OG, et al. Diffusion tensor imaging (DTI) studies in patients with obsessive-compulsive disorder (OCD): A review. J Psychiatr Res 2014;54:26–35. DOI: 10.1016/j.jpsychires.2014.03.006.
  38. Piras F, Piras F, Chiapponi C, et al. Widespread structural brain changes in OCD: A systematic review of voxel-based morphometry studies. Cortex 2015;62:89–108. DOI: 10.1016/j.cortex.2013.01.016.
  39. de Wit SJ, Alonso P, Schweren L, et al. Multicenter voxel-based morphometry mega-analysis of structural brain scans in obsessive-compulsive disorder. Am J Psychiatry 2014;171(3):340–349. DOI: 10.1176/appi.ajp.2013.13040574.
  40. Radua J, Grau M, van den Heuvel OA, et al. Multimodal voxel-based meta-analysis of white matter abnormalities in obsessive-compulsive disorder. Neuropsychopharmacology 2014;39(7):1547–1557. DOI: 10.1038/npp.2014.5.
  41. Bais M, Figee M, Denys D. Neuromodulation in obsessive-compulsive disorder. Psychiatr Clin North Am 2014;37(3):393–413. DOI: 10.1016/j.psc.2014.06.003.
  42. Figee M, Luigjes J, Smolders R, et al. Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder. Nat Neurosci 2013;16:386–387. DOI: 10.1038/nn.3344.
  43. Alexander G, Tino P, Julian G, et al. Obsessive-compulsive disorder is a heterogeneous disorder: Evidence from diffusion tensor imaging and magnetization transfer imaging. BMC Psychiatry 2015;15:135. DOI: 10.1186/s12888-015-0535-5.
  44. Uguz F, Kucuk A, Cicek E, et al. Mood, anxiety and personality disorders in patients with systemic lupus erythematosus. Compr Psychiatry. 2013;54(4):341–345. DOI: 10.1016/j.comppsych.2012.10.003.
  45. Carmona-Fernandes D, Santos MJ, Canhão H, et al. Anti-ribosomal P protein IgG autoantibodies in patients with systemic lupus erythematosus: Diagnostic performance and clinical profile. BMC Med 2013;11(1, article 98). DOI: 10.1186/1741-7015-11-98.
  46. Karimifar M, Sharifi I, Shafiey K. Anti-ribosomal P antibodies related to depression in early clinical course of systemic lupus erythematosus. J Res Med Sci 2013;18(10):860–864.
  47. Hanly JG, Su L, Urowitz MB, et al. Mood disorders in systemic lupus erythematosus: Results from an international inception cohort study. Arthritis Rheumatol 2015;67(7):1837–1847. DOI: 10.1002/art.39111.
  48. Sato S, Nakajima J, Shimura M, et al. Reversible basal ganglia lesions in neuropsychiatric lupus: A report of three pediatric cases. Int J Rheum Dis 2014;17(3):274–279. DOI: 10.1111/1756-185X.12235.
  49. Tay SH, Fairhurst AM, Mak A. Clinical utility of circulating anti-N-methyl-d-aspartate receptor subunits NR2A/B antibody for the diagnosis of neuropsychiatric syndromes in systemic lupus erythematosus and Sjögren's syndrome: An updated meta-analysis. Autoimmun Rev 2017;16(2):114–122. DOI: 10.1016/j.autrev.2016.12.002.
  50. van der Meulen PM, Barendregt AM, Cuadrado E, et al. Protein array autoantibody profiles to determine diagnostic markers for neuropsychiatric systemic lupus erythematosus. Rheumatology (Oxford) 2017;56(8):1407–1416. DOI: 10.1093/rheumatology/kex073.
  51. Iseme RA, McEvoy M, Kelly B, et al. Autoantibodies and depression: Evidence for a causal link? Neurosci Biobehav Rev 2014;40:62–79. DOI: 10.1016/j.neubiorev.2014.01.008.
  52. Yoshio T, Okamoto H, Hirohata S, et al. IgG anti-NR2 glutamate receptor autoantibodies from patients with systemic lupus erythematosus activate endothelial cells. Arthritis Rheum 2013;65:457–463. DOI: 10.1002/art.37745.
  53. Attwells S, Setiawan E, Wilson AA, et al. Inflammation in the neurocircuitry of obsessive-compulsive disorder. JAMA Psychiatry 2017;74(8):833–840. DOI: 10.1001/jamapsychiatry.2017.1567.
  54. Postal M, Lapa AT, Sinicato NA, et al. Depressive symptoms are associated with tumor necrosis factor alpha in systemic lupus erythematosus. J Neuroinflammation 2016;13(5):5. DOI: 10.1186/s12974-015-0471-9.
  55. Shunsei H, Yoshiyuki A, Tamiko Y, et al. Blood-brain barrier damages and intrathecal synthesis of anti-N-methyl-D-aspartate receptor NR2 antibodies in diffuse psychiatric/neuropsychological syndromes in systemic lupus erythematosus. Arthritis Res Ther 2014;16(2):R77. DOI: 10.1186/ar4518.
  56. Hirohata S, Sakuma Y, Yanagida T, et al. Association of cerebrospinal fluid anti-Sm antibodies with acute confusional state in systemic lupus erythematosus. Arthritis Res Ther 2014;16(5):450. DOI: 10.1186/s13075-014-0450-z.
  57. Hirohata S, Arinuma Y, Yanagida T, et al. Blood-brain barrier damages and intrathecal synthesis of anti-N-methyl-D-aspartate receptor NR2 antibodies in diffuse psychiatric/neuropsychological syndromes in systemic lupus erythematosus. Arthritis Res Ther 2014;16(2):R77. DOI: 10.1186/ar4518.
  58. Evaluation of blood-brain barrier function by quotient alpha2 macroglobulin and its relationship with interleukin-6 and complement component 3 levels in neuropsychiatric systemic lupus erythematosus. PLoS One 2017; 12(10): e0186414. DOI: 10.1371/journal.pone.0186414.
  59. Ogasawara A, Kakeda S, Watanabe K, et al. Quantitative susceptibility mapping in patients with systemic lupus erythematosus: detection of abnormalities in normal-appearing basal ganglia. Eur Radiol 2016;26(4):1056–1063. DOI: 10.1007/s00330-015-3929-3.
  60. Sarbu N, Toledano P, Calvo A, et al. Advanced MRI techniques: biomarkers in neuropsychiatric lupus. Lupus 2017;26(5):510–516.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.