Indian Journal of Private Psychiatry

Register      Login

VOLUME 13 , ISSUE 2 ( July-December, 2019 ) > List of Articles

REVIEW ARTICLE

Pharmacogenomics and its Future Implications in Treatment-resistant Depression

Prasad Shetty

Keywords : Depression, Genetics, Pharmacotherapy, Treatment resistance,Antidepressants

Citation Information : Shetty P. Pharmacogenomics and its Future Implications in Treatment-resistant Depression. Ind J Priv Psychiatry 2019; 13 (2):71-76.

DOI: 10.5005/jp-journals-10067-0044

License: CC BY-NC 4.0

Published Online: 00-12-2019

Copyright Statement:  Copyright © 2019; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

The global burden of depression is estimated over 300 million, which is equivalent to 4.4% of the world\'s population. However, it is reported that only 50% of patients receive some form of treatment and most individuals receiving conventional pharmacotherapy fail to achieve and sustain remission. Treatment-resistant depression (TRD) is defined as failure to achieve remission with two or more adequate antidepressants over a sufficient period of time. Treatment-resistant depression is estimated to occur in 10–30% of patients with major depression, and these patients need a variety of treatment strategies employed. Advances in genetic epidemiology have spurred research investigating the role genetics play in the pathophysiology of depression. Pharmacogenetic testing identifies mutations related to altered expression and functions of genes associated with antidepressant response. For this reason, genetic variants are considered theoretically optimal biomarkers to provide personalized antidepressant treatments and to reduce the proportion of patients who develop TRD. This review aims to understand the genetic mechanisms that contribute to the problem of TRD and the hurdles to its treatment in the context of the Indian population. We focus on the authors’ clinical experience in parallel with relevant research articles over the last two decades.


PDF Share
  1. Murphy JA, Sarris J, Byrne GJ. A review of the conceptualisation and risk factors associated with treatment-resistant depression. Depress Res Treat 2017;2017:4176825. DOI: 10.1155/2017/4176825.
  2. Organization WH. Depression and other common mental disorders: global health estimates. World Health Organization; 2017.
  3. McIntyre RS, Filteau M-J, Martin L, et al. Treatment-resistant depression: definitions, review of the evidence, and algorithmic approach. J Affect Disord 2014;156:1–7. DOI: 10.1016/j.jad.2013.10.043.
  4. Al-Harbi KS. Treatment-resistant depression: therapeutic trends, challenges, and future directions. Patient Prefer Adherence 2012;6:369. DOI: 10.2147/PPA.S29716.
  5. Fava M. Diagnosis and definition of treatment-resistant depression. Biol Psychiatry 2003;53(8):649–659. DOI: 10.1016/S0006-3223(03)00231-2.
  6. Gaynes BN, Asher G, Gartlehner G, et al. Definition of Treatment-Resistant Depression in the Medicare Population; 2018.
  7. Charlson FJ, Baxter AJ, Cheng HG, et al. The burden of mental, neurological, and substance use disorders in China and India: a systematic analysis of community representative epidemiological studies. Lancet 2016;388(10042):376–389. DOI: 10.1016/S0140-6736(16)30590-6.
  8. WHO, Depression in India Let's Talk India 2017 [cited 2019 18th March]. Available from: http://www.searo.who.int/india/depression_in_india.pdf.
  9. Ma Q, Lu AY. Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol Rev 2011;63(2):437–459. DOI: 10.1124/pr.110.003533.
  10. Schosser A, Serretti A, Souery D, et al. European Group for the Study of Resistant Depression (GSRD)—where have we gone so far: review of clinical and genetic findings. Eur Neuropsychopharmacol 2012;22(7):453–468. DOI: 10.1016/j.euroneuro.2012.02.006.
  11. Gardner KR, Brennan FX, Scott R, et al. The potential utility of pharmacogenetic testing in psychiatry. Psychiatry J 2014;2014:730956. DOI: 10.1155/2014/730956.
  12. Sinyor M, Schaffer A, Levitt A. The sequenced treatment alternatives to relieve depression (STAR* D) trial: a review. Can J Psychiatry 2010;55(3):126–135. DOI: 10.1177/070674371005500303.
  13. Fabbri C, Corponi F, Souery D, et al. The genetics of treatment-resistant depression: a critical review and future perspectives. Int J Neuropsychopharmacol 2018;22(2):93–104. DOI: 10.1093/ijnp/pyy024.
  14. Parikh RM, Lebowitz BD. Current perspectives in the management of treatment-resistant depression. Dialogues Clin Neurosci 2004;6(1):53.
  15. Amital D, Fostick L, Silberman A, et al. Serious life events among resistant and non-resistant MDD patients. J Affect Disord 2008;110(3):260–264. DOI: 10.1016/j.jad.2008.01.006.
  16. Roden DM, Wilke RA, Kroemer HK, et al. Pharmacogenomics: the genetics of variable drug responses. Circulation 2011;123(15): 1661–1670. DOI: 10.1161/CIRCULATIONAHA.109.914820.
  17. Gupta PD. Pharmacogenetics, pharmacogenomics and ayurgenomics for personalized medicine: a paradigm shift. Indian J Pharm Sci 2015;77(2):135. DOI: 10.4103/0250-474X.156543.
  18. Tansey KE, Guipponi M, Hu X, et al. Contribution of common genetic variants to antidepressant response. Biol Psychiatry 2013;73(7): 679–682. DOI: 10.1016/j.biopsych.2012.10.030.
  19. Ingelman-Sundberg M, Sim SC, Gomez A, et al. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 2007;116(3): 496–526. DOI: 10.1016/j.pharmthera.2007.09.004.
  20. Höfer P, Schosser A, Calati R, et al. The impact of Cytochrome P450 CYP1A2, CYP2C9, CYP2C19 and CYP2D6 genes on suicide attempt and suicide risk—a European multicentre study on treatment-resistant major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2013;263(5):385–391. DOI: 10.1007/s00406-012-0375-y.
  21. Vegter S, Boersma C, Rozenbaum M, et al. Pharmacoeconomic evaluations of pharmacogenetic and genomic screening programmes. Pharmacoeconomics 2008;26(7):569–587. DOI: 10.2165/00019053-200826070-00005.
  22. Naveen AT, Adithan C, Soya SS, et al. CYP2D6 genetic polymorphism in South Indian populations. Biol Pharm Bull 2006;29(8):1655–1658. DOI: 10.1248/bpb.29.1655.
  23. Porcelli S, Fabbri C, Spina E, et al. Genetic polymorphisms of cytochrome P450 enzymes and antidepressant metabolism. Expert Opin Drug Metab Toxicol 2011;7(9):1101–1115. DOI: 10.1517/17425255.2011.597740.
  24. Hicks JK, Bishop JR, Sangkuhl K, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin Pharmacol Ther 2015;98(2):127–134. DOI: 10.1002/cpt.147.
  25. Abraham BK, Adithan C. Genetic polymorphism of CYP2D6. Indian J Pharmacol 2001;33(3):147–169.
  26. Siddapuram S, Banerjee R, Tandan M, et al. CYP2C19 polymorphism as a predictor of personalized therapy in South Indian population. J Assoc Physicians India 2011;59:490–493.
  27. Rudberg I, Mohebi B, Hermann M, et al. Impact of the ultrarapid CYP2C19* 17 allele on serum concentration of escitalopram in psychiatric patients. Clin Pharmacol Ther 2008;83(2):322–327. DOI: 10.1038/sj.clpt.6100291.
  28. Shimoda K, Someya T, Yokono A, et al. The impact of CYP2C19 and CYP2D6 genotypes on metabolism of amitriptyline in Japanese psychiatric patients. J Clin Psychopharmacol 2002;22(4):371–378. DOI: 10.1097/00004714-200208000-00007.
  29. Adithan C, Gerard N, Vasu S, et al. Allele and genotype frequency of CYP2C19 in a Tamilian population. Br J Clin Pharmacol 2003;56(3): 331–333. DOI: 10.1046/j.1365-2125.2003.01883.x.
  30. Lamba JK, Dhiman RK, Kohli KK. CYP2C19 genetic mutations in North Indians. Clin Pharmacol Ther 2000;68(3):328–335. DOI: 10.1067/mcp.2000.109365.
  31. Jose R, Chandrasekaran A, Sam SS, et al. CYP2C9 and CYP2C19 genetic polymorphisms: frequencies in the south Indian population. Fundam Clin Pharmacol 2005;19(1):101–105. DOI: 10.1111/j.1472-8206.2004.00307.x.
  32. Guengerich FP. Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 1999;39(1):1–17. DOI: 10.1146/annurev.pharmtox.39.1.1.
  33. Guengerich FP. Cytochromes P450, drugs, and diseases. Mol Interv 2003;3(4):194. DOI: 10.1124/mi.3.4.194.
  34. Nebert DW, Russell DW. Clinical importance of the cytochromes P450. Lancet 2002;360(9340):1155–1162. DOI: 10.1016/S0140-6736(02)11203-7.
  35. Garte S. The role of ethnicity in cancer susceptibility gene polymorphisms: the example of CYP1A1. Carcinogenesis 1998;19(8):1329–1332. DOI: 10.1093/carcin/19.8.1329.
  36. Majumder PP, Mukherjee B. Genetic diversity and affinities among Indian populations: an overview. Human population genetics. Springer; 1993; pp. 255–275.
  37. Kumar V, Singh S, Yadav CS, et al. CYP1A1 and CYP3A4 polymorphic variations in Delhi population of Northern India. Environ Toxicol Pharmacol 2010;29(2):126–130. DOI: 10.1016/j.etap.2009.12.001.
  38. Garte S, Gaspari L, Alexandrie A-K, et al. Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev 2001;10(12):1239–1248.
  39. Umamaheswaran G, Kumar DK, Adithan C. Distribution of genetic polymorphisms of genes encoding drug metabolizing enzymes & drug transporters-a review with Indian perspective. Indian J Med Res 2014;139(1):27.
  40. Kirchheiner J, Müller G, Meineke I, et al. Effects of polymorphisms in CYP2D6, CYP2C9, and CYP2C19 on trimipramine pharmacokinetics. J Clin Psychopharmacol 2003;23(5):459–466. DOI: 10.1097/01.jcp.0000088909.24613.92.
  41. LLerena A, Dorado P, Berecz R, et al. Effect of CYP2D6 and CYP2C9 genotypes on fluoxetine and norfluoxetine plasma concentrations during steady-state conditions. Eur J Clin Pharmacol 2004;59(12): 869–873. DOI: 10.1007/s00228-003-0707-y.
  42. Scordo MG, Spina E, Dahl ML, et al. Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine. Basic Clin Pharmacol Toxicol 2005;97(5):296–301. DOI: 10.1111/j.1742-7843.2005.pto_194.x.
  43. Grasmäder K, Verwohlt PL, Rietschel M, et al. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol 2004;60(5):329–336. DOI: 10.1007/s00228-004-0766-8.
  44. Weinshilboum RM, Wang L, ed. Pharmacogenomics: precision medicine and drug response. Elsevier, Mayo Clinic Proceedings; 2017.
  45. Fagerness J, Fonseca E, Hess GP, et al. Pharmacogenetic-guided psychiatric intervention associated with increased adherence and cost savings. Am J Manag Care 2014;20(5):e146–e156.
  46. Johnson JA. Pharmacogenetics in clinical practice: how far have we come and where are we going? Pharmacogenomics 2013;14(7): 835–843. DOI: 10.2217/pgs.13.52.
  47. Berm EJ, de Looff M, Wilffert B, et al. Economic evaluations of pharmacogenetic and pharmacogenomic screening tests: a systematic review. second update of the literature. PLoS One 2016;11(1): e0146262. DOI: 10.1371/journal.pone.0146262.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.